图解Gossip:可能是最有趣的一致性协议 您所在的位置:网站首页 gossip 的意思 图解Gossip:可能是最有趣的一致性协议

图解Gossip:可能是最有趣的一致性协议

2023-12-09 20:51| 来源: 网络整理| 查看: 265

Gossip是什么

Gossip协议是一个通信协议,一种传播消息的方式,灵感来自于:瘟疫、社交网络等。使用Gossip协议的有:Redis Cluster、Consul、Apache Cassandra等。

六度分隔理论

说到社交网络,就不得不提著名的六度分隔理论。1967年,哈佛大学的心理学教授Stanley Milgram想要描绘一个连结人与社区的人际连系网。做过一次连锁信实验,结果发现了“六度分隔”现象。简单地说:“你和任何一个陌生人之间所间隔的人不会超过六个,也就是说,最多通过六个人你就能够认识任何一个陌生人。

数学解释该理论:若每个人平均认识260人,其六度就是260↑6 =1,188,137,600,000。消除一些节点重复,那也几乎覆盖了整个地球人口若干多多倍,这也是Gossip协议的雏形。

原理

Gossip协议基本思想就是:一个节点想要分享一些信息给网络中的其他的一些节点。于是,它周期性的随机选择一些节点,并把信息传递给这些节点。这些收到信息的节点接下来会做同样的事情,即把这些信息传递给其他一些随机选择的节点。一般而言,信息会周期性的传递给N个目标节点,而不只是一个。这个N被称为fanout(这个单词的本意是扇出)。

用途

Gossip协议的主要用途就是信息传播和扩散:即把一些发生的事件传播到全世界。它们也被用于数据库复制,信息扩散,集群成员身份确认,故障探测等。

基于Gossip协议的一些有名的系统:Apache Cassandra,Redis(Cluster模式),Consul等。

图解

接下来通过多张图片剖析Gossip协议是如何运行的。如下图所示,Gossip协议是周期循环执行的。图中的公式表示Gossip协议把信息传播到每一个节点需要多少次循环动作,需要说明的是,公式中的20表示整个集群有20个节点,4表示某个节点会向4个目标节点传播消息:

 

  Gossip Protocol

如下图所示,红色的节点表示其已经“受到感染”,即接下来要传播信息的源头,连线表示这个初始化感染的节点能正常连接的节点(其不能连接的节点只能靠接下来感染的节点向其传播消息)。并且N等于4,我们假设4根较粗的线路,就是它第一次传播消息的线路:

 

  first infected node

第一次消息完成传播后,新增了4个节点会被“感染”,即这4个节点也收到了消息。这时候,总计有5个节点变成红色:

 

  infected nodes

那么在下一次传播周期时,总计有5个节点,且这5个节点每个节点都会向4个节点传播消息。最后,经过3次循环,20个节点全部被感染(都变成红色节点),即说明需要传播的消息已经传播给了所有节点:

 

  infected all nodes

需要说明的是,20个节点且设置fanout=4,公式结果是2.16,这只是个近似值。真实传递时,可能需要3次甚至4次循环才能让所有节点收到消息。这是因为每个节点在传播消息的时候,是随机选择N个节点的,这样的话,就有可能某个节点会被选中2次甚至更多次。

发送消息

由前面对Gossip协议图解分析可知,节点传播消息是周期性的,并且每个节点有它自己的周期。另外,节点发送消息时的目标节点数由参数fanout决定。至于往哪些目标节点发送,则是随机的。

一旦消息被发送到目标节点,那么目标节点也会被感染。一旦某个节点被感染,那么它也会向其他节点传播消息,试图感染更多的节点。最终,每一个节点都会被感染,即消息被同步给了所有节点:

 

  infected 可扩展性

Gossip协议是可扩展的,因为它只需要O(logN) 个周期就能把消息传播给所有节点。某个节点在往固定数量节点传播消息过程中,并不需要等待确认(ack),并且,即使某条消息传播过程中丢失,它也不需要做任何补偿措施。大哥比方,某个节点本来需要将消息传播给4个节点,但是由于网络或者其他原因,只有3个消息接收到消息,即使这样,这对最终所有节点接收到消息是没有任何影响的。

如下表格所示,假定fanout=4,那么在节点数分别是20、40、80、160时,消息传播到所有节点需要的循环次数对比,在节点成倍扩大的情况下,循环次数并没有增加很多。所以,Gossip协议具备可扩展性:

  可扩展性 失败容错

Gossip也具备失败容错的能力,即使网络故障等一些问题,Gossip协议依然能很好的运行。因为一个节点会多次分享某个需要传播的信息,即使不能连通某个节点,其他被感染的节点也会尝试向这个节点传播信息。

健壮性

Gossip协议下,没有任何扮演特殊角色的节点(比如leader等)。任何一个节点无论什么时候下线或者加入,并不会破坏整个系统的服务质量。

然而,Gossip协议也有不完美的地方,例如,拜占庭问题(Byzantine)。即,如果有一个恶意传播消息的节点,Gossip协议的分布式系统就会出问题。

https://zhuanlan.zhihu.com/p/41228196

背景

Gossip protocol 也叫 Epidemic Protocol (流行病协议),实际上它还有很多别名,比如:“流言算法”、“疫情传播算法”等。

 

这个协议的作用就像其名字表示的意思一样,非常容易理解,它的方式其实在我们日常生活中也很常见,比如电脑病毒的传播,森林大火,细胞扩散等等。

 

Gossip protocol 最早是在 1987 年发表在 ACM 上的论文 《Epidemic Algorithms for Replicated Database Maintenance》中被提出。主要用在分布式数据库系统中各个副本节点同步数据之用,这种场景的一个最大特点就是组成的网络的节点都是对等节点,是非结构化网络,这区别与之前介绍的用于结构化网络中的 DHT 算法 Kadmelia。

 

我们知道,很多知名的 P2P 网络或区块链项目,比如 IPFS,Ethereum 等,都使用了 Kadmelia 算法,而大名鼎鼎的 Bitcoin 则是使用了 Gossip 协议来传播交易和区块信息。

实际上,只要仔细分析一下场景就知道,Ethereum 使用 DHT 算法并不是很合理,因为它使用节点保存整个链数据,不像 IPFS 那样分片保存数据,因此 Ethereum 真正适合的协议应该像 Bitcoin 那样,是 Gossip 协议。

 

这里先简单介绍一下 Gossip 协议的执行过程:

Gossip 过程是由种子节点发起,当一个种子节点有状态需要更新到网络中的其他节点时,它会随机的选择周围几个节点散播消息,收到消息的节点也会重复该过程,直至最终网络中所有的节点都收到了消息。这个过程可能需要一定的时间,由于不能保证某个时刻所有节点都收到消息,但是理论上最终所有节点都会收到消息,因此它是一个最终一致性协议。

 

Gossip 演示

现在,我们通过一个具体的实例来深入体会一下 Gossip 传播的完整过程

 

为了表述清楚,我们先做一些前提设定

1、Gossip 是周期性的散播消息,把周期限定为 1 秒

2、被感染节点随机选择 k 个邻接节点(fan-out)散播消息,这里把 fan-out 设置为 3,每次最多往 3 个节点散播。

3、每次散播消息都选择尚未发送过的节点进行散播

4、收到消息的节点不再往发送节点散播,比如 A -> B,那么 B 进行散播的时候,不再发给 A。

注意:Gossip 过程是异步的,也就是说发消息的节点不会关注对方是否收到,即不等待响应;不管对方有没有收到,它都会每隔 1 秒向周围节点发消息。异步是它的优点,而消息冗余则是它的缺点。

 

这里一共有 16 个节点,节点 1 为初始被感染节点,通过 Gossip 过程,最终所有节点都被感染:

 

1.50

 

 

Gossip 的特点(优势)

1)扩展性

网络可以允许节点的任意增加和减少,新增加的节点的状态最终会与其他节点一致。

2)容错

网络中任何节点的宕机和重启都不会影响 Gossip 消息的传播,Gossip 协议具有天然的分布式系统容错特性。

3)去中心化

Gossip 协议不要求任何中心节点,所有节点都可以是对等的,任何一个节点无需知道整个网络状况,只要网络是连通的,任意一个节点就可以把消息散播到全网。

4)一致性收敛

Gossip 协议中的消息会以一传十、十传百一样的指数级速度在网络中快速传播,因此系统状态的不一致可以在很快的时间内收敛到一致。消息传播速度达到了 logN。

5)简单

Gossip 协议的过程极其简单,实现起来几乎没有太多复杂性。

Márk Jelasity 在它的 Gossip一书中对其进行了归纳:

 

Gossip 的缺陷

分布式网络中,没有一种完美的解决方案,Gossip 协议跟其他协议一样,也有一些不可避免的缺陷,主要是两个:

1)消息的延迟

由于 Gossip 协议中,节点只会随机向少数几个节点发送消息,消息最终是通过多个轮次的散播而到达全网的,因此使用 Gossip 协议会造成不可避免的消息延迟。不适合用在对实时性要求较高的场景下。

2)消息冗余

Gossip 协议规定,节点会定期随机选择周围节点发送消息,而收到消息的节点也会重复该步骤,因此就不可避免的存在消息重复发送给同一节点的情况,造成了消息的冗余,同时也增加了收到消息的节点的处理压力。而且,由于是定期发送,因此,即使收到了消息的节点还会反复收到重复消息,加重了消息的冗余。

 

 

Gossip 类型

Gossip 有两种类型:

Anti-Entropy(反熵):以固定的概率传播所有的数据 Rumor-Mongering(谣言传播):仅传播新到达的数据

Anti-Entropy 是 SI model,节点只有两种状态,Suspective 和 Infective,叫做 simple epidemics。

Rumor-Mongering 是 SIR model,节点有三种状态,Suspective,Infective 和 Removed,叫做 complex epidemics。

其实,Anti-entropy 反熵是一个很奇怪的名词,之所以定义成这样,Jelasity 进行了解释,因为 entropy 是指混乱程度(disorder),而在这种模式下可以消除不同节点中数据的 disorder,因此 Anti-entropy 就是 anti-disorder。换句话说,它可以提高系统中节点之间的 similarity。

在 SI model 下,一个节点会把所有的数据都跟其他节点共享,以便消除节点之间数据的任何不一致,它可以保证最终、完全的一致。

由于在 SI model 下消息会不断反复的交换,因此消息数量是非常庞大的,无限制的(unbounded),这对一个系统来说是一个巨大的开销。

 

但是在 Rumor Mongering(SIR Model) 模型下,消息可以发送得更频繁,因为消息只包含最新 update,体积更小。而且,一个 Rumor 消息在某个时间点之后会被标记为 removed,并且不再被传播,因此,SIR model 下,系统有一定的概率会不一致。

而由于,SIR Model 下某个时间点之后消息不再传播,因此消息是有限的,系统开销小。

 

Gossip 中的通信模式

在 Gossip 协议下,网络中两个节点之间有三种通信方式:

Push: 节点 A 将数据 (key,value,version) 及对应的版本号推送给 B 节点,B 节点更新 A 中比自己新的数据 Pull:A 仅将数据 key, version 推送给 B,B 将本地比 A 新的数据(Key, value, version)推送给 A,A 更新本地 Push/Pull:与 Pull 类似,只是多了一步,A 再将本地比 B 新的数据推送给 B,B 则更新本地

如果把两个节点数据同步一次定义为一个周期,则在一个周期内,Push 需通信 1 次,Pull 需 2 次,Push/Pull 则需 3 次。虽然消息数增加了,但从效果上来讲,Push/Pull 最好,理论上一个周期内可以使两个节点完全一致。直观上,Push/Pull 的收敛速度也是最快的。

 

 

复杂度分析

对于一个节点数为 N 的网络来说,假设每个 Gossip 周期,新感染的节点都能再感染至少一个新节点,那么 Gossip 协议退化成一个二叉树查找,经过 LogN 个周期之后,感染全网,时间开销是 O(LogN)。由于每个周期,每个节点都会至少发出一次消息,因此,消息复杂度(消息数量 = N * N)是 O(N^2) 。注意,这是 Gossip 理论上最优的收敛速度,但是在实际情况中,最优的收敛速度是很难达到的。

 

假设某个节点在第 i 个周期被感染的概率为 pi,第 i+1 个周期被感染的概率为 pi+1 ,

1)则 Pull 的方式:

 

2)Push 方式:

 

显然 Pull 的收敛速度大于 Push ,而每个节点在每个周期被感染的概率都是固定的 p (0



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有